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Abstract: - The multivariate statistical methods are commonly used to fault detection through a straight limit 
line given by the HotellingT2. However, the traditional straight limit line is difficult to detect the fault 
effectively under the non-steady conditions, and the rate of false alarm and missing alarm is high. For these 
problems above, a fault detection method based on dynamic peak-valley limit is proposed in this paper. The 
proposed method introduces relative principal component analysis (RPCA) to carry out data dimension 
reduction, extract principal component (PCs) and calculate T2 statistics, then adopts moving least squares (MLS) 
to preprocess T2 statistics to obtain the fitting curve which is called peak-valley curve, and finally connects 
peak and valley points in the curve to construct another control limit, by introducing a weight combined with 
the traditional straight limit line to construct the dynamic peak-valley limit. At the end, it is applied to wind 
power generation system, and the results could verify the effectiveness of the method.  
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1 Introduction 
With the development of economic construction and 
improvement of electrification, modern industrial 
systems become increasingly complex. The 
reliability and safety of these systems are more and 
more concerned by people. If fault was discovered 
early, major failure and accidents could be avoided, 
so the fault detection and fault diagnosis become 
more important. Many scholars have done a lot of 
research, including data fusion, artificial immune, 
multivariate statistical methods and so on [1-3]. 
Fault diagnosis based on multivariate statistical is a 
kind of effective method. The two most commonly 
used statistical methods are principal component 
analysis (PCA) and partial least squares (PLS) [4,5], 
but they are generally suitable for steady working 
conditions, and the model is fixed. For the 
time-varying industrial process [6], recursive PCA 
and exponentially weighted PCA (EWPCA) can 
adaptively update control limit [7,8], thus have 
received widespread concern. But if the complex 
system is under the non-steady conditions (The 
non-steady conditions are referred to such motion 

process as starting, braking and other mutation 
conditions [9]), the above methods fail to detect 
fault effectively and computational load is large [10]. 
However, the actual industrial process is often 
unsteady, such as wind power generation system 
[11], because of the season, air pressure and 
topography influence, the speed of wind changes 
random and unsteady so significantly that the role of 
the wind vane is also random and unsteady. In 
addition, the failure probability of the system under 
the non-steady conditions is relatively high. 

In this paper, we present a new method of fault 
detection based on the dynamic peak-valley limit to 
deal with the shortcomings of the traditional 
methods under the non-steady conditions, and the 
paper is organized as follows. 

Section 2 will give a detailed review on data 
dimension reduction method based on RPCA and 
how to calculate the T2 statistics. Section 3 
introduces MLS method to preprocess T2 statistic to 
get peak-valley curve. Section 4 will propose the 
fault detection method based on dynamic 
peak-valley limit, including the established 
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procedure of the dynamic peak-valley limit and its 
fault detection process. In section 5, the model of 
wind power generation system will be built and its 
brief introduction will be given too. In section 6, we 
apply this method to the wind power generation 
system under the non-steady conditions to test the 
validity of the method and discuss its test results. 
Eventually, the conclusion is summarized in section 
7. 

 
 

2 RPCA and T2 statistic  
Normally the traditional principal component 
analysis method could detect and diagnose fault, but 
if the data is in “rotundity” scatter after 
dimensionless standardization, then it is difficult to 
extract the typical PCs and establish an effective 
fault detection model. For these problems, 
Tian-zhen Wang et al. proposed a relative principal 
component analysis method and the concepts of 
relative transform, relative principal component, 
“rotundity” scatter and so on [12,13]. The new 
concepts and new method could effectively 
overcome the shortcomings of the traditional PCA 
in data compression and fault detection, and have 
the following advantages: 

1) If system variables distribute uniformly after 
dimensionless standardization, RPCA method not 
only could solve this problem, but could get the 
more representative relative principal component, 
which could achieve the purpose of data 
compression and fault detection. 

2) To avoid the condition that large covariance 
variable would play a major role in selecting 
principal component, when the data is in different 
dimensional sense. 

3) The energy of the system is not necessarily 
conserved after dimensionless standardization, but 
could keep conservation after the relative 
translation. 

 
 

2.1 RPCA Algorithm 
Given N nX R ×∈ as a data matrix of system variable 
sequence, n  is the number of variables, N  is the 
number of samples. 

Let 
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Then Eq.(1) is called relative translation and could 
be written as the following matrix form. 

*R
i i iX M X=                  (2) 

where 
( )* i i

i
i

X E X
X

ζ
−

=              (3) 

In Eq.(3), iζ  is the standardization factor 
(Standardization factor has a variety of choices, 
such as ( )

1
maxi ij N

x jζ
≤ ≤

=  or ( )1 2var( )i iXζ = ), RX  

is the relative matrix of matrix X , and iM  is the 
specific gravity coefficient of relative transform and 
its selection method is in [12]. 

The main operation process of RPCA could be 
summarized by the following steps: 

1) Computing the covariance matrix RX
R  of 

RX from Eq.(4).  
{[ ( )] [ ( )]}R

R R T R R
X

R E X E X X E X= − −    (4) 
2) Calculating relative eigenvalue λ  and its 

eigenvector p  respectively by  
0RX

I Rλ − =              (5) 
and 

0 1,2, ,Ri iX
I R p i nλ − = =       (6) 

where 
[ (1) (2) ( )]T

i i i ip p p p n=      (7) 

iλ  is the i th eigenvalue of RX
R , and ip  is the 

corresponding eigenvector, suppose 
1 2 nλ λ λ≥ ≥ ≥ . 

3) Selecting the number of relative PCs 
according to the cumulative contribution rate 
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Where, m  is the number of selected PCs, and the 
value of δ  is determined by the user. 
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2.2 T2 statistics  
Calculate T2 statistics by the above RPCA algorithm 

2 1 1 ( )T R T R T
i i m i i m m m iT t t X P P X− −= Λ = Λ      (9) 

In Eq.(9), 1( , , )m mdiag λ λΛ =   is diagonal matrix, 
m  is the number of selected PCs, 

i

R
i mt X P=  is 

the score vector, jp  is the load vector and also is 
the eigenvector of RX

R , then  

1 2[ ]m mP p p p=   
The T2 control limit could be calculated by using 

F distribution, and its equation is as follows: 

1
( 1) ( , )ucl

m NT F m N m
N m α

−
= −

−
      (10) 

Where, 1uclT  is the upper limit of T2 statistic, N  is 
the number of samples, and m  is the number of 
reserved PCs. Confidence 1 α−  could be 
determined by the user need, for example, if 
confidence is 95% or 99%, then 0.05α =  or 0.01. 

( , )F m N mα −  is the critical value of F distribution 
corresponding to the test level α , the degree of 
freedom m and N m− . 
 
 
3 Data Preprocessing  
Compared with the traditional curve fitting method, 
moving least squares mainly has the following 
advantages: 

1) There is no need to do piecewise fitting and 
smoothing, when the number of scattered data is 
large or its shape is complex. 

2) Take different basis function for different 
accuracy and different weight function for changing 
the smoothness of the fitting curve, and other fitting 
methods could not do these. 

Therefore, this paper chooses MLS method for 
data preprocessing. In this section, data 
preprocessing includes three aspects, that is, the 
introduction of MLS principle, the selection of 
parameters such as basic functions, weight functions 
and support radius and the specific process of curve 
fitting. 

 
 

3.1 MLS Principle 
MLS method is based on the least square method, 
but has a large improvement [14-17]. First of all, 
fitting function consists of basis function ( )q x  and 
coefficient function ( )a x , ( )a x is coordinate 
function. Secondly, introduce the concepts of weight 
function and compact support. Compact support 
means that the y  value of point x  is only 

influenced by nodes of the subdomain nearby 
point x , and the subdomain is called support domain 
of point x . 

The fitting function ( )f x  could be expressed 
below: 

1
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Where 1 2( ) ( ( ), ( ), , ( ))T
la x a x a x a x=   is a set of 

coefficients, 1 2( ) ( ( ), ( ), , ( ))T
lq x q x q x q x=   is the 

basis function vector, and basis function usually 
need to select the complete polynomial base, for 
example 1D case 

Linear basis: ( ) (1, ) 2Tq x x l= =  
Quadratic basis: 2( ) (1, , ) 3Tq x x x l= =  
In order to get the more accurate local 

approximation, minimize a weighted square of 
discrete error of the local approximation ( )if x  and 
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Where k  is the number of nodes in the influence 
domain, ( )f x  is the fitting function and ( )iw x x−  
is weight function. 

In matrix form, (12) could be rewritten as 
( ( ) ) ( )( ( ) )TJ Qa x Y W x Qa x Y= − −     (13) 

Where, 1 2( , , , )T
kY y y y=  , 

1 2( ) ( ( ), ( ), , ( ))kW x diag w x w x w x=  , 
( ) ( )i iw x w x x= − , 
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Minimizing J  with the respect to coefficients 
( )a x , then according to the least square principle, 

the equation (14) could be obtained. 
1( ) ( ) ( )a x A x B x Y−=            (14) 

Where ( ) ( )TA x Q W x Q= , ( ) ( )TB x Q W x= . 
Substituting Eq.(14) into Eq.(11) to rearrange the 
equation, Eq.(11) could be re written as 

1
( ) ( ) ( )

k
c c

i i
i

f x x y x Yφ ψ
=

= =∑         (15) 

Where, ( )c xψ  is known as the moving least square 
shape function, c  is the order number of basis 
function. 
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1
1 2( ) [ , , , ] ( ) ( ) ( )c c c c T

kx q x A x B xψ φ φ φ −= =  (16) 
3.2 Parameters Selection 
By the MLS principle, it is known that the fitting 
function ( )f x  is mainly determined by the basis 
function and weight function. Because of taking 
different basis function will get different accuracy 
and different weight function will change the 
smoothness of the fitting curve, this section will 
mainly explore how to select suitable parameters. 

According to reference [18], basis function 
usually adopt the form of power function, and the 
number of the power function is commonly between 
once and three times. Increasing the number of basis 
function could improve the precision of the 
calculation, but it also brings so many other 
problems: not only significantly increase the amount 
of computation and reduce the calculation accuracy, 
but also the coefficient matrix obtained by the least 
square method generally appears morbid in a certain 
degree. Considering these problems, low time basis 
function could be chosen. Quadratic basis is selected 
as the basis function in this paper. 

Weight function in the MLS method plays a very 
important role. First weight function should be 
positive and decrease monotonically with the 
increase of ix x− . Weight function should also 
have compact support, namely, in support domain 
(the influence area of x ) is not equal to zero, but is 
zero outside the domain. Generally choose round as 
the support domain, and support radius is r . 
Weight function has a variety of types, such as 
exponential weight function, spline weight function, 
trigonometric weight function, Gaussian weight 
function and so on. Because of the continuity of the 
spline function is good and the accuracy of the got 
best result is the highest, so spline function is 
commonly used. However, the number of spline 
function divides into three times, four times, five 
times, etc. But high-order spline function computes 
complex [19,20], and the result is not necessarily 
better, the cubic spline could generally meet the 
requirements of the curve fitting, so in this paper 
weight function choose cubic spline function. Set 

'' ,i
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Support radius r  of the weight function is 

another factor to influence curve fitting, namely the 
range of compact support domain. Appropriate 
support radius should include the nodes in the 
influence “enough and as little as possible”, so that 
could highlight local fitting effect and improve the 
calculation efficiency. In order to maintain the 
approximate locality of MLS, the support radius of 
node x  should be as small as possible, at the same 
time, in order to guarantee matrix ( )A x  reversible, 
radius should be large enough to include sufficient 
points in the definition area of each node. Generally 
the support radius should make sure that support 
domain contains 1l +  nodes at least ( l  is the item 
number of basis function). This paper selects 
quadratic basis, namely 3l = , so the support 
domain should contains four nodes at least, and the 
nodes are evenly distributed, then 2r = . 

 
 

3.3 Curve Fitting Based on MLS 
The basic idea of curve fitting based on MLS is to 
equally divide fitting region between adjacent nodes 
into d  calculation points firstly, then calculate the 
value of the calculation points by using Eq.(15), 
finally connect all the calculation points to form a 
smooth fitting curve, namely peak-valley curve and 
its characteristics could be found in reference [9]. 
Fig.1 is the flow chart of curve fitting and the design 
process is as follows: 
 

Data of waiting for 
preprocessing

Choosing calculation 
points 

Choosing appropriate 
parameters

Calculating the shape 
function of the 

calculation points

Calculating the  value 
of calculation points

Connecting calculation 
points to form fitting curve

 
Fig.1 Flow chart of curve fitting 

 
1) Divide the region between adjacent nodes into 
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d  segments evenly, these segment points are called 
calculation points ( 10d =  in this paper). 

2) Select the appropriate basis function ( )q x , 
weight function ( )w x , support radius r . 

3) Calculate shape function ( )c xψ  of each 
calculation point by Eq.(16). 

4) Calculate the value of each calculation point 
by Eq.(15). 

5) Connect all calculation points to form 
peak-valley curve ( )f x . 
 
 
4 A Fault Detection Method Based on 
Dynamic Peak-valley Limit under the 
Non-steady Conditions 
The T2 control limit of fault detection method based 
on RPCA is only related to the number of PCs and 
confidence 1 α− , so it often remains unchanged or 
a constant in a sampling period and it is easy to 
occur the phenomena of false alarm or missing 
alarm when applied to monitor non-steady 
conditions. 

So, dynamic peak-valley limit is proposed. 
According to curve function ( )f x , peak points and 
valley points could be obtained firstly, then these 
points are connected one by one to construct a new 
control limit combined with the traditional T2 
control limit based on RPCA by introducing a 
weight to get the dynamic peak-valley limit. Finally, 
the process of the fault detection based on dynamic 
peak-valley limit is given. 
 
 
4.1 The Establishment of Dynamic 
Peak-valley Limit 
According to section 3, the function ( )f x  of 
peak-valley curve could be obtained, ( )f x′  is the 
derivative of function ( )f x .  Let 

( ) 0f x′ =                (18) 
According to Eq.(18), the abscissas of a set of 

peak points and valley points are obtained. Suppose 
( )1,2,...,ja j g= , ( )1,2,...,jb j h=  ( ,g h N∈ )are 

the abscissas of peak points and valley points in the 
curve respectively. Then according to the size of the 
abscissas, connect these points ordinal to form 
control limit 2uclT . 

1uclT  is a straight line, there exists a lot of 
missing alarm and the detection sensitivity is not 
high. 2uclT is close to T2 statistic, so there exists a lot 
of missing alarm and the detection sensitivity is too 

high. Dynamic peak-valley limit combines the T2 

control limit 1uclT  and the control limit 2uclT  by 
introducing a weight ω , could effectively reduce 
the false alarm rate and missing alarm rate and 
change the detection sensitivity through adjusting 
the size of weight ω . Its mathematical expression 
is as follows: 

1 1 2* (1 )*ucl ucl uclT T Tω ω= + −        (19) 
Where, ω  is weight, and 0 1ω< < . 

The detection limit is no longer a straight line 
under the non-steady conditions, but could changes 
with condition changing, and is mainly composed of 
peak and valley points, so it is called dynamic 
peak-valley limit. As is shown in Fig.2. 
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Fig.2 Construction of dynamic peak-valley limit 

 
Dynamic peak-valley limit is constructed by the 

normal data, and the following steps will provide 
the detailed description. 
STEP1. Sampling historic data  

In the historical data set, collect a certain cycle 
length of historical data 1uclX , the cycle length is 

tN  (the length of the sampling time). 
STEP2. Dimension reduction process 

1) Standardize data 1uclX , then get R
uclX  

through relative transform and calculate covariance 
matrix R

uclX
R . 

2) Calculate the eigenvalue λ  and the 
corresponding eigenvector p  of R

uclX
R , and the 

number m  of PCs is decided by user need. 
3) Calculate T2 statistics according Eq.(9). 

STEP3. Data preprocessing 
1) Select the appropriate basis function ( )q x , 

weight function ( )w x  and support radius r . 
2) Divide the region between adjacent nodes into 

d  calculation points 
STEP4. Constructing dynamic peak-valley limit 

1) Calculate the value of 1uclT  according to 
Eq.(10). 
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2) Calculate the values of all peak points and 
valley points in the peak-valley curve, then connect 
all the points one by one to form the control limit 

2uclT . 
3) Calculate dynamic peak-valley limit uclT  

according to Eq.(19). 
 
 
4.2 Fault Detection Based on Dynamic 

Peak-valley Limit 
We sample a group of measured data testX  online, 
then use the dynamic peak-valley limit constructed 
by the normal historical data uclX  to process fault 
detection for the measured data. If the system is 
fault, output fault time, otherwise, the system is 
normal. Fig.3 is the flow chart of fault monitoring. 

Start

Sampling data online

Calculating T2 statistic 
based on RPCA

The control 
limit monitor whether 

there is fault

System is normal

N

Normal historical 
data

RPCA

Constructing Tucl1

Constructing Tucl2

Constructing dynamic 
peak-valley limit

Output fault time and 
make the corresponding 

action

Detection  Online Constructing 
Dynamic Limit

Y

Curve fitting based 
on MLS

 
Fig.3 Flow chart of fault monitoring 

 
The following steps will provide the detailed 

description of fault detection process. 
STEP1. Sampling real-time data online 
According the length of the sampling time tN  

in Section 4.1 STEP1, sample a group of measured 
data testX  online.  

STEP2. Dimension reduction process 
Steps are same with STEP2 in section 4.1. 

Calculate T2 statistics according to Eq.(9) 
STEP3. Fault detection of system: 
1) Detect whether T2 statistics of testX  is over 

the control limit uclT , if it is true, then output the 
fault time and make the corresponding action 
according to the system requirements. 

2) Otherwise, return to STEP1 and go on fault 
detection of the next process. 

 
 

5 the Model of Wind Power 
Generation System 
Wind power is a pollution-free renewable energy, 

which is exhaustless and wide distribution. With the 
requirement of ecological environment and energy, 
the development of wind energy is taken seriously 
increasingly. The wind power generation will be 
large-scale development in the 21st century [21,22]. 

Direct-drive permanent-magnet synchronous 
generation (DDPM) is one of a main direction of 
wind power generation [23,24]. The advantages of 
DDPM are as follows: 

1) High operation efficiency;  
2) Less control circuit and simple control;  
3) Maintain the voltage of dc bus basically 

constant, and control electromagnetic torque of 
generator to adjust rotor speed;  

4) Output constant frequency and the three-phase 
alternating current (AC) of the voltage, good 
adaptability to the fluctuation of power grid.  

But the performance stability of permanent 
magnet material is high, if the weight of the motor 
increases, then the capacity of the inverter becomes 
larger. Those shortages lead that the cost of the 
generator is high. So generator fault could cause 
great economic loss, so it is very important to detect 
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fault of DDPM. So we choose DDPM as fault 
detection model in this paper. 
 
5.1 The Model of DDPM 
DDPM is directly driven by variable-pitch wind 
turbines without gearbox. The output alternating 
current of generator converts to direct current by the 
high power electronic converter rectifier. Then, it 
becomes alternating current which frequency and 
voltage is constant. The output frequency and 
voltage of generator is along with the wind speed 
changes. So it Make the best use of the wind energy. 
The Fig.4 shows the structure of DDPM. The 
system is composed of wind turbine, rectifier, 
inverter and maximum power point tracking (MPPT) 
[25,26]. 
 

Power 
Grid

InverterRectifier

Fan
Drive

Power 
Calculation

Power 
CalculationMPPT

Controller
*P P

 Fig.4 The model of DDPM 
 

The paper use MATLAB to simulate the model 
of DDPM by for experiment. The simulation system 
is composed of wind turbine, MPPT, boost circuit, 
AC - DC conversion circuit. The Fig.5 shows the 
simulation model of DDPM. 
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Fig.5 The simulation model of DDPM 

 
According to the theory of the wind generator, 

the output of its mechanical power is: 
2 31 ( , )

2wind pP R C Vρπ ε γ=         (20) 

( , )pC ε γ  is the conversion efficiency of wind 
energy and also is the function of tip speed ratio ε  

and pitch Angle γ , ρ is the air density, R  is 

radius of the rotor, V is the wind speed, R
V
ϖε =  is 

the ratio of Rotor tip speed Rϖ  and the wind 
speed V , ϖ  is the speed of wind turbine rotor. 
The theoretical maximum limit of ( , )pC ε γ  is 
59.3%. Considering the influence of wind speed 
fluctuation and wind direction fluctuation, maxpC  is 
roughly 0.4 and difficultly exceeds 0.5. The 
expression is below: 

1

12.5

1

1160.22( 0.4 5)pC e εγ
ε

−

= − −      (21) 

1 3

1 0.0351/ ( )
0.08 1

ε
ε γ γ

= −
+ +

      (22) 

wind
mwind

PT
ϖ

=               (23) 

According to Eqs.20-23 can get the simulation 
model of wind turbine as shown is Fig.6. 

1
Tm

-K-

Gain3
-1

-K-

f(u) Fcn2

u[1]^3

Fcn

2
wm

1
Vwind

 
Fig.6 The simulation model of wind turbine 

 
In order to absorb wind energy furthest, wind 

turbines always run in the maximum power point 
and the output power must match the captured 
mechanical power strictly. So MPPT must be added 
to the system, so as to obtain the conversion 
efficiency of the maximum wind energy. The Fig.7 
is the simulation model of MPPT based on PSF. 
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Fig.7 The simulation model of MPPT 
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Boost circuit is to boost dc power by using 
MPPT system to produce PWM wave. The boost 
converter will transform pulsating dc of the diode 
rectifier output to constant voltage. By adjusting 
PWM pulse, change the dutyfactor of switch tube 
and the function of load to match the load 
impedance, and then capture the maximum wind 
energy. The simulation model of boost circuit is 
shown in fig.8. 
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i+-
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g C
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1 PWM

 
Fig.8 The simulation model of boost circuit 

 
 
5.2 Main Parameters of DDPM 
The simulation model of Permanent magnet 
synchronous generator is one of the MATLAB owns 
and the main parameters of DDPM in the paper is in 
table 1. 
 
Table 1 The main parameters of the wind generator 

power feedback model 
Mechanical 

(W ) 39900 Rotor flux 
(Wb ) 0.192 

Generator 
power (VA ) 44333 

Friction 
coefficient  
( . .N m s ) 

0.001889 

Pitch 
angle( ° ) 0 

The optimal 
tip speed 

ratio 
8.1 

Stator 
resistance 

(Ω ) 
0.05 Fan radius 

R  ( m ) 15 

Inductance 
( H ) 0.000635 

Wind speed 
range 

( /m s ) 
6-11 

Pole 
logarithmic 

( P ) 
36 

The biggest 
wind power 
utilization 
coefficient 

0.48 

 
 
6 Application of the Fault Detection Method 
Based on Dynamic Peak-valley Limit in 
Wind Power Generation 
According to the model of section 5, suppose the 
normal wind speed is at the range 6 / 11 /m s m s− . 
Get several groups of normal fan parameters (speed, 

voltage, power, three-phase rotor current, etc.) data 
to construct dynamic peak-valley limit through 
running the simulation model many times, and the 
cycle size is 951. 

In sampling time 350-600, the wind speed of the 
simulation model take about 14 /m s  randomly. 
Wind speed of the fan in other times is random, but 
in the normal wind speed range. When the wind 
speed exceeds 11 /m s , the fan withstand 
mechanical stress is greater than the rated maximum 
stress, and the long time operation will damage the 
wind turbine, as a group of fault data. Next, we will 
use these data to do some experiments. 

 
 

6.1 Fault Detection Results and Discussion 
False alarm rate and missing alarm rate are 
important parameters to measure whether a fault 
detection model is reliable or not, and are also the 
mainstay to verify the feasibility of a method. In this 
paper, traditional PCA algorithm, dynamic 
peak-valley limit based on PCA algorithm, dynamic 
data window and dynamic peak-valley limit based 
on RPCA are adopted to monitor the working 
process of the fan respectively. Fig.9~Fig.12, 
respectively, are testing results graph of the four 
methods. 
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Fig.9 Fault detection result of wind power 

generation system based on PCA 
 

Fig.9 is fault detection result of wind power 
generation system based on PCA. For the normal 
data, the T2 control limit also has the phenomenon 
of false alarm rate, so the performance of the whole 
system is poor and this method is not suitable for 
fault detection under the non-steady conditions. 
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Fig.10 Dynamic peak-valley limit fault detection 
result of wind power generation system based on 

PCA 
 

Fig.10 is the fault detection result of dynamic 
peak-valley limit based on PCA. From the figure we 
can see that there exists a great number of false 
alarm in the time 600-951. 
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Fig.11 Dynamic data window fault detection result 
of wind power generation system based on RPCA 

 
Fig.11 shows the dynamic data window fault 

detection result. According to observation, the 
phenomena of false alarm or missing alarm are rare 
and this method can detect fault effectively. 
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Fig.12 Dynamic peak-valley limit fault detection 
result of wind power generation system based on 

RPCA 
 

Fig.12 shows the result of fault detection based 

on dynamic peak-valley limit (RPCA). This method 
maintains a lower false alarm rate and missing alarm 
rate compared with other methods from the above 
figures and can detect fault more effectively. 

 
 

6.2 Result Comparison and Discussion 
According to the analysis of the above examples, we 
can get the comparison results of the false alarm rate 
and the missing alarm rate of the four methods and 
the results are shown in Table 2. 

 
Table 2 Four kind of fault detection methods 

performance comparison 

Multivariate statistical 
fault detection method 

False 
alarm 

rate (%) 

Missing 
alarm rate 

(%) 
PCA 0 26.13 

Dynamic peak-valley 
limit based on PCA 14.51 10.25 

Dynamic data window 
based on RPCA 2.21 6.53 

Dynamic peak-valley 
limit based on RPCA 

( 0.1, (1 ) 99%ω α= − = ) 
2.05 2.67 

  
According to table 2 and the analysis of Fig.9, 10, 

11, 12, we can see that: PCA algorithm is difficult to 
extract principal components effectively after 
dimension standardization, so it could not detect 
fault effectively and exists seriously missing alarm 
phenomenon and the missing alarm rate is up to 
26.13%, detection sensitivity is low. Dynamic 
peak-valley limit based on PCA, compared with 
PCA, the missing alarm rate reduces greatly and is 
about 10.25%, but the false alarm rate becomes 
higher, so the reliability of fault detection model is 
relatively poor. In this paper, the proposed dynamic 
peak-valley limit based on RPCA could effectively 
extract principal components and get the needed 
information through according to the wind power 
generation system actual requirements. The method 
combines two control limits by a weight, could not 
only detect the fault effectively, but also reduce the 
false alarm greatly. Known from Fig.12 and table 2, 
the method makes the system keep lower missing 
alarm rate and false alarm rate, is 2.05% and 2.67% 
respectively, and could enhance the effectiveness of 
the system monitor greatly. At the same time 
dynamic data window method of Fig.11 could also 
maintain a low false alarm rate and missing alarm 
rate, is 2.21% and 6.53% respectively. But the 
dynamic peak-valley limit is superior to the 
dynamic data window no matter from false alarm 
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rate or missing alarm rate. 
 

Table 3 Performance comparison of different 
parameters of fault detection method based on 

dynamic peak-valley limit 
the Fault Detection Method 

Based on Dynamic 
Peak-valley Limit 

False 
alarm 

rate(%) 

Missing 
alarm 

rate(%) 

0.05ω =  
confidence 

(1 ) 99%α− =  

6.36 3.84 

0.1ω =  2.05 2.67 

0.2ω =  1.05 8.26 

 
0.1ω =  
 

(1 ) 80%α− =  11.25 1.15 

(1 ) 95%α− =  6.25 2.45 

(1 ) 99%α− =  2.05 2.67 
 
Table 3 lists the value of false alarm rate and 

missing alarm rate when the system selects different 
confidence and weight. From the table we know that 
the fault detection method based on dynamic 
peak-valley limit could adjust the value of 
confidence and weight according to the users 
demand to achieve the expected accuracy and 
effectiveness of fault detection. 
 
 
7 Conclusion 
The detection limit of the traditional multivariate 
statistical method is a straight line, when applied to 
the non-steady conditions, there will be a large 
number of false alarm and missing alarm, so it could 
not effectively detect fault. For these problems, this 
paper introduces RPCA algorithm to get T2 statistics 
firstly, then uses MLS method to preprocess T2 
statistics for obtaining the peak-valley curve, and 
connects the peak points and valley points in the 
curve to construct a new control limit combined 
with the traditional T2 control limit based on RPCA 
by introducing a weight to get the dynamic 
peak-valley limit. Finally, a fault detection method 
based on dynamic peak-valley limit was put forward. 
This method could effectively reduce the false alarm 
rate and the missing alarm rate, and the monitoring 
sensitivity could be adjusted through changing the 
value of weight to maintain a balance between false 
alarm and missing alarm. Applied to the fault 
detection of the wind power generation system, the 
experimental results verified the effectiveness of the 
proposed method. 
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